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Abstract

The transient analysis of a magnetoelectroelastic medium containing a crack is made under antiplane mechanical
and inplane electric and magnetic impacts. The crack is assumed to penetrate through the solid along the poling direc-
tion. By using the Fourier and Laplace transforms, the associated mixed boundary value problem is reduced to a Fred-
holm integral equation of the second kind, which is solved numerically. By means of a numerical inversion of the
Laplace transform, dynamic field intensity factors are obtained in the time domain. Numerical results are presented
graphically to show the effects of the material properties and applied electric and magnetic impacts on the dynamic
intensity factors of COD and stress, and dynamic energy density factors. The results indicate that except for the inten-
sity factors of electric displacement and magnetic induction, other field intensity factors exhibit apparent transient fea-
ture. Moreover, they depend strongly on mechanical input as well as electric and magnetic impacts.
© 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Due to the intrinsic coupling between mechanical and electric behaviors in piezoelectric materials, pie-
zoelectric materials have been widely used in microelectromechanical systems as sensors, actuators, and
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transducers, etc. Furthermore, in a class of piezoelectric/piezomagnetic composites consisting of piezoelec-
tric and piezomagnetic phases, not only the interaction of mechanical and electric fields but also the inter-
actions of mechanical and magnetic, and electric and magnetic fields are present, and owing to this
characteristic, which can interchange the internal energies stored in mechanical, electric, and magnetic
forms, piezoelectric/piezomagnetic composites are potential candidates for fabricating a new generation
of smart or intelligent structures. For such piezoelectric/piezomagnetic composites, effective material prop-
erties have been predicted according to the viewpoint of micromechanics via various approaches by
researchers including Li and Dunn (1998), Huang et al. (1998), Aboudi (2001), among others. In particular,
a surprising magnetoelectric coupling between electric and magnetic fields under low frequency can take
place, and it is, however, not present in arbitrary single-phase piezoelectric or piezomagnetic material.
Moreover, the magnetoelectric coefficients depend strongly upon the volume fraction of each constituent
as well as the configuration of inclusions such as bulk composites, fibrous reinforced composites, and lay-
ered composites (Nan, 1994; Benveniste, 1995; Li, 2000). In addition, within the framework of the theory of
linear magnetoelectroelasticity, a general magnetoelectroelastic solution has been put forward for a trans-
versely isotropic magnetoelectroelastic solid by Wang and Shen (2002), and for a spherically isotropic mag-
netoelectroelastic solid by Wang and Zhong (2003), respectively.

On the other hand, for piezoelectric/piezomagnetic composites, a main disadvantage is that they are very
susceptible to fracture because of their brittleness. Owing to various causes, cracks or flaws are inevitably
present in such magnetoelectroelastic materials. For a magnetoelectroelastic material with cracks subjected
to applied magnetoelectromechanical loading, magnetoelectroelastic field concentration occurs near cracks,
which probably rises high enough to cause crack advance, and finally leads to serious degradation of the
performance of magnetoelectroelastic materials. To understand the failure mechanism of magnetoelectro-
elastic materials, the analysis of elastic, electric and magnetic behaviors in a cracked magnetoelectroelastic
solid subjected to applied magnetoelectroelastic loading is prerequisite. Along this line, Green’s functions
for anisotropic magnetoelectroelastic solids with an elliptical cavity or a crack have been obtained (Liu
et al., 2001). Furthermore, Wang and Mai (2003, 2004) investigated the problems involving an antiplane
shear crack and a plane crack in a magnetoelectroelastic medium where the crack surface is assumed to
be impermeable to electric and magnetic field, similar to the electric boundary condition at the crack surface
used in treating crack problems of piezoelectric materials (Pak, 1990). A similar antiplane impermeable
crack problem was also treated by Spyropoulos et al. (2003), who assumed magnetoelectric coupling coef-
ficient of a magnetoelectroelastic solid to vanish. In contrast to the above analysis, using the permeable
electric and magnetic boundary conditions at the crack surface instead of the impermeable boundary con-
ditions, Gao et al. (2003a,b,c) studied the distribution of the magnetoelectroelastic field disturbed by a sin-
gle crack and collinear cracks in a magnetoelectroelastic solid, and by an interfacial crack between two
dissimilar magnetoelectroelastic media, respectively. The influence of magnetic field and electric field on
crack growth in particular for crack initiation angle has been investigated under various boundary condi-
tions including so-called mode-1, mode-1II, and mixed mode crack by Sih and Chen (2003), Sih and Song
(2003), and Sih et al. (2003).

The above-mentioned works are mainly related to static problems. However, under various time-depen-
dent loadings the study of dynamic mechanical, electrical and magnetic behaviors in a magnetoelectroelas-
tic material with a crack is of great significance. To the best of the author’s knowledge, so far the dynamic
response problem of a cracked magnetoelectroelastic material has not been considered.

This paper is concerned with the transient response of magnetoelectroelastic field of a magnetoelectro-
elastic solid with a crack under sudden magnetoelectroelastic impact loading. The crack is assumed to be
penetrate through the medium along the poling direction. The problem is reduced to a Fredholm integral
equation of the second kind by using the Fourier and Laplace transforms. Solving the resulting equation
numerically and performing a numerical inversion of the Laplace transform, dynamic field intensity factors
are obtained in the time domain. The results are presented graphically and the effects of the material prop-



X.-F. Li | International Journal of Solids and Structures 42 (2005) 3185-3205 3187

erties on the dynamic COD intensity factors, dynamic stress intensity factors, and dynamic energy density
factors are examined.

2. Statement of the problem

For a linearly magnetoelectroelastic solid subjected to external electric and/or magnetic fields, not only
the electric displacement and magnetic induction can be caused, but also the mechanical deformation of the
magnetoelectroelastic medium can be induced owing to the coupling of elastic, electric and magnetic behav-
iors. Conversely, an applied mechanical loading can produce electric field and magnetic field, in addition to
mechanical deformation. The relationship of the interactions of mechanical, electric, and magnetic fields in
magnetoelectroelastic materials can be described by the following full-couplied constitutive equations

g =Cs —eE — hH, (1)
D = es + ¢E + dH, (2)
B =hs +dE + uH, (3)

where g, D, and B are the stress tensor, electric displacement vector, and magnetic induction vector, respec-
tively; s, E, and H are the strain tensor, electric field vector, and magnetic field vector, respectively; C, ¢, and
u are the elastic modulus tensor, dielectric constant tensor, and magnetic permittivity tensor, respectively; e,
h, and d are the piezoelectric, piezomagnetic, and magnetoelectric coefficient tensors. It is noted that the
above constitutive equations are limited to the case of low frequency, implying that electric and magnetic
fields can be treated as static case.

Consider a transversely isotropic magnetoelectroelastic solid with a through Griffith crack lying at
|x| <a,y=0, —0o <z<o0, as shown in Fig. 1. Here Cartesian coordinates x, y, z are the principal axes
of the material symmetry while the z-axis is the symmetry axis of the magnetoelectroelastic solid. Thus we
have the material properties as follows

cp cp ¢z 0 0 0
c cn ¢z 0 0 0
C— €13 C13 €33 0 0 0 , (4)
0 0 0 2c4 O 0
0O 0 O 0 2cy 0
L 0 0 0 0 0 C11 — C12 |

E H
poling axes

Fig. 1. Schematic of an antiplane shear crack in a magnetoelectroelastic material along with associated coordinates.
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[0 ey ] o h31
0 es 0 h31
0 e 0 h
e — 33 : h— 33 ’ (5)
0 €15 0 hlS 0
€15 0 0 his 0 0
L0 0 0] L0 0 0]
_811 0 0 Hi 0 0 T d]] 0 0
&= 0 &1 0 y M= 0 Hir 0 ) d= 0 dll 0 ) (6)
L 0 0 €33 0 0 ,U33_ 0 0 d33

which contain 17 constants, including five elastic constants, two dielectric constants, two magnetic primi-
tivities, three piezoelectric constants, three piezomagnetic constants, and two magnetoelectric constants.

In what follows our attention is focused on the case where a magnetoelectroelastic solid is subjected to
sudden antiplane mechanical impact and inplane electric and magnetic impacts with respect to the xoy-
plane. In this case we have

I/l1:1/l2:0, E3:0, B3:07
and there are only nonvanishing out-of-plane elastic displacement u3 = w(x, y, ¢), inplane electric potential ¢

(x,»,1), and inplane magnetic potential ¢(x,y,?). Under such circumstances, the stress, electric displace-
ment, and magnetic induction are related to w, ¢, and ¢ by the following constitutive equations

Oz = CaaWy +ei5h, +Msp,, 0, =cuw, +eisd,+hse,, (7)
Dy=eisw, —end, —due,, D,=eisw,—end,—dne,, (8)
By =hswy —duo¢,— uney, By=hswy—duo,— pue,, )

where the comma denotes partial differentiation with respect to the suffix space variable. Here, six indepen-
dent nonvanishing material constants are involved. In particular, if neglecting the piezomagnetic and mag-
netoelectric coefficients, the constitutive equations for a single-phase piezoelectric ceramic in a state of
antiplane deformation can be recovered from the above, while if neglecting the piezoelectric and magneto-
electric coefficients, the constitutive equations for a single-phase piezomagnetic material in a state of anti-
plane deformation can be recovered from the above. Furthermore, if imposing the piezoelectric,
piezomagnetic and magnetoelectric coefficients to vanish, the constitutive equations for a purely elastic
medium in a state of antiplane deformation can be revived.

Based on the above constitutive equations, it follows from the equation of motion and the Maxwell
equations that w(x, y, ), ¢(x,y,t) and ¢(x, y, t) satisfy the basic governing differential equations for dynam-
ics problems of a magnetoelectroelastic solid in a state of antiplane deformation

62
cuVPw+esVih + hisViep = 06—57 (10)
e1sVPw — ey V2 —d 1 Ve =0, (11)
hisVPw — dy Vg — py, Vi =0, (12)

where p is the mass density of the magnetoelectroelastic medium, and V? represents the two-dimensional
Laplacian operator. Here body forces, free charges, and current densities have been neglected.
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To obtain a solution of the above-stated dynamic problem involving a crack, appropriate boundary con-
ditions at the crack surfaces must be furnished. Of much interest from the viewpoint of fracture mechanics
is the singular crack-tip field disturbed by a crack subjected to applied impact loadings. Furthermore, ow-
ing to symmetry of the problem it is sufficient to consider the corresponding problem in the upper half-
plane y > 0, so in the following we confine our attention to this region. Consequently, the mechanical, elec-
tric, and magnetic boundary conditions at the crack surfaces can be stated below

Gﬂ(x707t) = _GO(X)f(t)a |x| <a, t>0, (13)
D,(x,0,1) = =Do(x)f (¢), |x| <a, t>0, (14)
B,(x,0,1) = =Bo(x)f(¢), |x| <a, t>0, (15)

where f(7) is a prescribed function in time #, f{t) =0 as ¢ < 0, and g¢(x), Do(x), and By(x) are prescribed
functions.

3. Solution of the problem

It is seen from Egs. (10)—(12) that w, ¢, and ¢ are coupled. To decouple them, a simple approach is to
introduce two new functions { and # such that

du eispy; — hisd

p={——n+ , (16)
e E11 k) —dfl
di hisenn — eisdi
Hi enfy — d)
Thus, Egs. (10)—(12) then become
1 o*w
2., —
Vw=aae (18)
V=0, (19)
Vin=0, (20)
with
m by 2. — 2hysersd
cs = 077 o = Cag + 1 15 + Hues - 15€15 n o1)
P ey —dy

¢s = +/cm/p being the shear wave velocity of a magnetoelectroelastic material. Obviously, the shear wave
velocity ¢ is related to all the material constants appearing in the constitutive equations (7)—(9).

In order to obtain a desired electroelastic field, for convenience it is necessary to impose that a magneto-
electroelastic medium is initially at rest. Namely, a magnetoelectroelastic material is subjected to the van-
ishing initial conditions:

ow
W|t:0 =0, a |t:0 =0, (22)
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0¢

¢|z:0 =0, or |t:0 =Y (23)
Op

90|t:0 =0, E |r:0 =0. (24)

Additionally, a solution should be sought under the regularity conditions. In other words, all the elastic,
electric and magnetic quantities will vanish as y — oco. Accordingly, performing the Laplace transform with
respect to ¢ and the Fourier cosine transform with respect to x to both sides of Eq. (18) yields

dAw N
T (52+p>w —0, (25)

2
CS

where a quantity with the asterisk denotes the Laplace transform with respect to ¢ of this quantity, defined
by

f(p) = /0 f()e™™ds, (26)
and the circumflex over a quantity stands for the Fourier cosine transform with respect to x, defined by
F@)= [ e eos(en) dx. 1)

0

p and & being the parameters of the Laplace and Fourier transforms, respectively. Solving the ordinary
differential equation (25) under the regularity conditions, we obtain a formal solution in the transform-
domain. From this solution, making use of the inverse Fourier cosine transform leads to the out-of-plane
displacement in the Laplace transform domain, expressed by

W= [ A p)expl-op) cos(en) a (28)
0
where
p2
o= 52 —+ 27 (29)

and A(&,p) is unknown to be determined through appropriate boundary conditions.
Using the same routine, we can get similar expressions for the introduced functions { and # from Eqgs.
(19) and (20), respectively. Namely,

r= / " M(&) exp(~y) cos(Ex) de, (30)

"= / " N(&) exp(~ &) cos(Ex) de, (31)
0

where unknown M(&) and N(&) can be determined through appropriate boundary conditions. Once A(¢, p),
M(¢) and N(¢) are determined, w, { and 7 can be obtained in the Laplace transform domain, and further in
the physical space only by performing the inverse Laplace transform. In the following we utilize given
boundary conditions to look for the unknown A(&,p), M(&) and N(§).

To this end, one can apply the Laplace transform to Egs. (7)—(9), together with the vanishing initial con-
ditions. Especially, one can get

* _
o, =

cuw, +eisd, + hise’, (32)
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D; =€15W3—811¢3}—d11(piv, (33)

By = hisw), —du¢, — 9, (34)

Hence, substituting (28), (30) and (31) into the Laplace transform of (16) and (17), then into (32)—(34)
results in the expressions for the components of the stress, electric displacement and magnetic induction in
the Laplace transform domain in terms of A(¢&,p), M(£) and N(&), i.e.

0, = —cm/o oA (&) exp(—ay) cos(éx) dé

_ / ngels - hlsd”)M(é) + (hls - elSd”)N(é)} exp(—&y) cos(&x) dé, (35)

0 Hi 11

2 00
;= [ n1(6)exp(—y)cosen) dz (36)
i 11 0

g = Gt = diy / " EN(&) exp(—2y) cos(&x) de (37)

g én 0 7

fory = 0.
Now, application of the Laplace transform to the boundary conditions (13)—(15) yields

O';()C,O,p) = —O'()(X)f*(p), |x‘ <a, (38)
Dy(x,0,p) = =Do(x)f"(p), Ix| <a, (39)
Bi(x,0,p) = =By(x)f"(p), Ix[<a, (40)

In the above results we use the expressions (35)-(37) for o}, D, and B}, and, after some algebra, get

0 1
| e peostede = —alre). W< (1)
0 m
| am@costende = - Diwr ) il <a ()
0 enpy —di
o0 8 .
| av@eosieae = - mwre) M <a (43)
0 iy — d11
with
e — hysd hise — esd
ro(x) _ Go( " 15111 152 “Do(x) + 15€11 152 1130()6). (44)
enplyy —dy enpyy —dy
On the other hand, from the following boundary conditions
w(x,0,¢) =0, |x|>a, t>0, (45)
¢(x,0,) =0, |x| >a, t>0, (46)

¢(x,0,6) =0, |x|>a, t>0, (47)
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derived from the symmetry of the considered problem, in connection with (28), (30) and (31) one can derive

/OOOA(é,p) cos(éx)dé =0, |x| > a, (48)
/0 T M(E) cos(Ex)dE =0, x| > a, (49)
/0 xN(é) cos(éx)dé =0, |x| > a. (50)

Hence, we get three decoupled systems of simultaneous dual integral equations for A(&,p), M(&), and
N(¢&). Clearly, in addition to the functions of the right-hand side, the dual integral equations for M(¢)
are the same in form as those for N(¢), and they are a special case of the dual integral equations for
A(¢,p) with the requirement o = . Therefore, in what follows for convenience we only deal with the dual
integral equations for A(¢&,p). The solution of such dual integral equations can be derived by using the tech-
niques, outlined in Chen and Sih (1977). That is, if the unknown function A(&, p) is represented as the fol-
lowing integral

A(E,p) = / (5P o(s)ds, (51)

where Jo(') is the Bessel function of the first kind of order zero, and (s, p) is a new auxiliary function, it is
easily shown that due to the following identity

/OQJO(sé) cos(éx)dé =0, x>s. (52)
0

Eq. (48) is automatically fulfilled when substituting (51) into (48). In addition, inserting (51) into (41), after
some manipulations we get a Fredholm integral equation of the second kind for the introduced auxiliary
function y(x,p):

“ 2x T 1o(s)
x,p)+x | K(x,s,p)y(s,p)ds =—f* ————ds, 0<x<aq, 53
o)+ [ Kespien)ds =S rp) [ (53)
with the kernel K(x,s,p), given by
K(xs.p) = [ (1= Ea(sE)lxd) de. (54)
0
In deriving the above Fredholm integral equation, we have employed the known results
2 [ cos(s¢)
JO(xé) - T Jo m dS7 (55)
and
o 1
/ E(sEMo(x)dE = 5(x ) (56)
0

where J(-) denotes the Dirac delta function.

Owing to the complicated form of the kernel in Eq. (53), it seems unlikely that a closed-form solution can
be derived for general cases. A numerical solution of the resulting Fredholm integral equation, however, is
readily determined by a standard scheme. Prior to the presentation of its numerical solution, let us consider
the special case where o« = ¢. It can be understood as the limiting case of p — 0, which, in the physical space,
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corresponds to a dynamic solution when ¢ — oo, i.e. the corresponding static solution. In fact, a compar-
ison of (41) and (42) indicates that the solution of dual integral equations for M(&) can be obtained by set-
ting « = ¢ in the above-obtained solution. Accordingly, when o = ¢, a closed-form solution can readily
obtained to be

’L'()(S)

2x .
) = — < .
/{(XMD) TCCmf (P) 0 \/m dS, 0 X <a (57)
Especially, when 7¢(s) = 79, the above solution reduces to
‘C &3
2(x.p) =C—OXf (p)- (58)

In the following we appeal to a numerical method for solving the resulting Fredholm integral equation
(53). For the purpose of numerical computation, the variables are normalized by the crack half-length 4, i.e.

=]

x5 _ o cmylxp)
x_aa _a7 X(xap) - a ) (59)

and Eq. (53) is then rewritten as

z(fc7p)+5c/0 K(x,s,p);_((s,p)ds:%f*(p)/ox%ds, 0<x<1, (60)
where
K(x,5,p) = /OOC { &+ (ap/cs)z — é}JO(Ef)JO(TCO dé. (61)

Taking into account the fact that the function \/ & + (ap/c;)* — ¢ in the integrand of the kernel behaves
as O(1/¢) for large &, this leads to very slow convergence of this integral. To accelerate convergence of this
integral, denoting

R(E,p) = /& + (apfes)? — &~ 2[”’# (62)

& + (ap/ey)’

we find

R(&,p) ~ O<%>, for large &. (63)
Therefore, utilizing the following result

/0 " T (jp/cs)z.h(ggyo(xods = Iy(xap/c,)Ko(sap/e,), 0 <X <5 (64)

I() and Ky(*) being the modified zero order Bessel functions of the first and second kind, respectively, one
can rewrite the kernel in Eq. (60) as

K(x,5,p) = %IO(Xap/CS)KO(Eap/CS) + /000 R(&E,p)Jo(3E)Jo(xE)dE, 0 <X <5, (65)

It is obvious that the integral in the second term at the right-hand side in the above equation can be then
evaluated by a truncated integral due to its rapid convergence.
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4. Field intensity factors

In this section, we determine the transient response of the crack-tip field under external stimulus. From
the viewpoint of fracture mechanics, of much interest is the field intensity factors, which are commonly used
to characterize the crack-tip field and chosen as significant fracture parameters.

With the above results in hand, it is easily found that the remaining is to seek w, together with w ,,.
Knowledge of w, in conjunction with { and #, allows us to get all desired dynamic field intensity factors
and crack-tip field. To obtain an asymptotic expression for crack opening displacement w* in the Laplace
transform domain behind the crack tip, putting (51) into (28) it is sufficient to evaluate the following
integral

<o “ x(s,p)
w'(x,0,p) = ((s,p)Jo(s&) cos(éx)dsdé = L ds, x<a, 66
5.00) = [ [ ds.pinlse)cos(en [ (66)
so one can get
w*(x,0,p) :7X(a’p)\/a27x2+0(r), r=a—x<a, (67)
a
with the COD intensity factor
C g m _1(1,p)
Kop = lim a— x)w(x, 0) = o Vna. (68)

Furthermore, the strain component w’, in the Laplace transform domain ahead of the crack tip can be
obtained by evaluating the following integral

Wi 0. == [ [ ots.pba(se) cos(endsde, x> a, (69)
o Jo
after some calculations, the asymptotic expression for wj‘y(x, 0, p) near the crack tip is follows
xy(a,p)
w' (x,0,p) = ———=—=+ O(1). 70
.0.p) = ZEEL 4 0(1) (70)

It is easily shown that the strain intensity factor K’ coincides with the above-obtained COD intensity factor
Kcop.

Once K{p is determined in the Laplace transform domain, Kcop can be derived by using the inverse
Laplace transform technique. As pointed out in the above, it is unlikely that a closed-form expression
for the solution of the Fredholm integral equation of the second kind (60) can be obtained because of
the complexity of the kernel. Therefore, an explicit expression for COD in the physical space cannot be gi-
ven in closed form. Instead, in what follows we employ a numerical inversion technique of the Laplace
transform to get the COD intensity factor in the time domain.

On the other hand, based on the results given in the preceding section, for Dy(x) = Dy, By(x) = By, we get
explicit analytic solutions of the dual integral equations for M(&) and N(&), respectively, as

_ mpati(ad) *
M(E) =~ P Dy ), (1)
N(E) = — @Y g ). (72)

(311#11 - d?l)c

Furthermore, upon substitution of the above results into (30), (31), by performing the inverse Laplace
transform, explicit expressions for { and 5 can be arrived at as follows
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e— W!é—_xz —y} Duf (1), (73)

ey —dy
e
n=——t— [\/ - —J’} Bof(1). (74)
enpyy —dy

Moreover, from (36) and (37) one further get electric displacement and magnetic induction in the entire
upper-plane as

D,(x,y,t) = Dy | —5—5—— 1| f(2), (75)

I/ 55— a®

B,(x,y,t) =B
V(s 2,1) 0 1571%

=1 f(1). (76)
Here we have used some known results, given in Fabrikant (2003), for example

/0 h éJl (a&) exp(— &) cos(éx)dE = é {\/zg e y} , (77)
/OOOJl (a&) exp(—&y) cos(éx)dE = 1.k 4'13_&2 (78)

2 2
a a lzfl1

with
h%MaﬂfﬂZ—¢<a—x>2+y2] (19)
lz=%[\/(a+x)2+y2+\/(a—x>2+y2} (80)
In particular, at the crack line, we have
x
D, (x,0,t) = Dy L/T—az_ l}f(t), (81)
X

Obviously, electric displacement and magnetic induction near the crack tips have a usual square-root
singularity, but not transient response, which are only proportional to prescribed time function f{¢). This
conclusion is in agreement with the premise of the adopted theoretical model limited to the case of low fre-
quency. With the above these results in hand, other intensity factors in the physical space can be determined
by the following relations

dnhls—ﬂnels D dieis — e11his

a
K :CmKCOD+ d2 d2
Enpy —ay el —ay

K®, (83)
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dihis — d

KE — 11115 H112€15KCOD+ My S KD — 11 . KB, (84)
enpy —di enpy —dy enpy —di
d —enh d

K — 11€15 8112 ISKCOD_ 11 . KD+ €11 . KB, (85)
enpy —di ety — diy ey —di

with
KP = vraDyf (1), KB = VraByf(t). (86)

Based on the viewpoint of energy, energy density factor around the crack tip is an important fracture
parameter in predicting crack propagation in piezoelectric/piezomagnetic composites (Song and Sih,
2003; Sih and Chen, 2003; Sih and Song, 2003; Sih et al., 2003; Spyropoulos et al., 2003). Using the above
results, after some manipulations we can get dynamic energy density factors for the situation under consid-
eration as

S(t) =1 C44<KCOD)2 + 811(KE>2 + ﬂn(KH)Z +2d KK (87)

5. Numerical results

In this section, the effects of the material properties on the dynamic normalized field intensity factors are
examined for a cracked piezoelectric/piezomagnetic composite made of the piezoelectric BaTiO; material as
the inclusions and piezomagnetic (magnetostrictive) CeFe,O,4 material as the matrix. The relevant material
properties of the piezoelectric phase BaTiO; and the piezomagnetic phase CeFe,O, are listed in Table 1.
For convenience, the material constants of the magnetoelectroelastic BaTiO3;—CeFe,O4 composite are as-
sumed to obey the mixture rule (Song and Sih, 2003), i.e.

K=KV +x"(1=Vy), (88)

where k with the superscripts ¢, i, m denotes the corresponding constants of ¢44, 11, t11, €15, /115 of the com-
posite, inclusion, and matrix, respectively, and V;is the volume fraction of the piezoelectric phase BaTiOs.
Due to the absence of magnetoelectric coupling coefficient in a single-phase piezoelectric or piezomagnetic
material, the magnetoelectric constant d;; existing only in the piezoelectric/piezomagnetic composite as a
significant new feature cannot be determined by the above mixture rule. Therefore, based on the analysis
of micromechanics, this coefficient is chosen as d;; = 5.2 x 1072 (N's/VC) for a fibrous reinforced compos-
ite, and dj; = —3.6 x 10~® (Ns/VC) for a laminated composite when V= 0.5 (Li, 2000), respectively.

In the following, we take time impact function as the Heaviside unit step function, i.e. f{¢) = H(t), and
ao(x) = gy, Do(x) = Dy, Bo(x) = By. In this case, from the results obtained in the preceding section, it is eas-
ily seen that the intensity factors of the electric displacement and magnetic induction do not vary with time,
while the COD intensity factor, in connection with other intensity factors, vary with time. In other words,
the latter dynamic field intensity factors exhibit a transient characteristic. Moreover, Kcop depends on the
material properties owing to (68), and so do other dynamic field intensity factors since they are represented
in terms of Kcop.

Table 1
The relevant material properties

caq (GPa) err (C*/Nm?) 11 (Ns/C?) €5 (C/m?) hys (N/Am) dy; (Ns/VC)
BaTiOs 43 11.2x107° 5%107¢ 11.6 0 0

CoFe,0,4 453 80 x 10712 —590% 107 0 550 0
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To obtain the dynamic intensity factors in the physical space, the inverse Laplace transform must be per-
formed. Because of the difficulty to derive an explicit analytic solution, a numerical approach for carrying
out the inversion of the Laplace transform proposed by Stehfest (1970) is invoked to obtain dynamic field
intensity factors in the time domain. That is, once y(1,p) in the Laplace transform domain is determined
numerically, its inversion g(1,#) can be determined by the following scheme

In2) & [ nin(2)
g(lat)—T;VnX 177 ) (89)
with
min(n,L) N |
o (71),,% m" (2m)! (90)

iy (L —m)lm!(m — D)l(n — m)!2m — n)!’
where [(n + 1)/2] s the integer part of the real number (z + 1)/2. This method not only has reasonable accu-
racy for a fairly wide range of Laplace transforms (Davies and Martin, 1979), and but also is very easy and
simple, as compared to other numerical inversions such as Miller and Guy (1966). In (89) only one param-
eter L is involved, which is suggested by Stehfest (1970) to be taken as lower integers, while more than two
parameters are involved in other methods for an inversion of the Laplace transform.

Fig. 2 shows the response of normalized dynamic COD intensity factor c¢44Kcop/00+/ma versus normal-
ized time cgt/a for the piezoelectric BaTiO; material, the piezomagnetic CoFe,O4 material, and piezoelec-
tric/piezomagnetic BaTiO3—CoFe,O, composite under purely mechanical impact. It is found that the
response curve as well as the overshoot of dynamic COD intensity factor of the BaTiO3-CoFe,O4 compos-
ite lie in the intermediate between the counterparts of single BaTiO; or CoFe,04 material, implying that the
response characteristic of the BaTiO3-CoFe,0,4 composite differs from each constituent. However, there
are not evident difference for a fibrous composite and a laminated composite. This is easily understood
since only mechanical impact is applied. In addition, for comparison, numerical results obtained by the

12
Cas COD/ Go(na)

ct/a

Fig. 2. Comparison of the variations of normalized dynamic COD intensity factor vs normalized time via Stehfest’s and Miller and
Guy’s methods.
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Miller and Guy’s numerical inversion of Laplace transform are also plotted with dashed lines in Fig. 2.
Obviously, the results derived by the above two methods are in satisfactory agreement. Moreover, we find
that the overshoots of all response curves occur at the same normalized time about ¢,/a = 2.1. This is to
say that the practical time arriving at the peak will be delayed when ¢; becomes small for different materials.

In the following, the normalized dynamic intensity factors of COD and stress for the BaTiO3—CoFe,Oy4
composite are depicted under combined applied impacts. When subjected to external electric stimulus and
mechanical impact, the response curves of the dynamic COD intensity factor with applied magnetic induc-
tion By/oy = 0.2 x 10°° m/A are shown in Figs. 3 and 4, respectively. From Figs. 3 and 4 one can find that
the transient response is similar to that of the dynamic stress intensity factor for a cracked elastic medium.
That is, after applied impact is suddenly exerted, response curves rise abruptly, arriving at an overshoot,
then decrease gradually, and finally approach to the corresponding static value. Furthermore, it is seen that
a positive electric impact increases the COD intensity factors, while a negative one decreases the COD
intensity factors. In particular, from Fig. 4 in the presence of magnetic loading, By/oo=0.2x 107¢ m/A,
the responses of fibrous and laminated composites with a crack exist apparent difference, indicating the
influence of the magnetoelectric coefficient on the dynamic COD intensity factor. This discrepancy will dis-
appear in the absence of applied magnetic loading in Fig. 3, since in this case the response of a cracked
fibrous composite coincides with that of a cracked laminated composite. As a by-product, it is observed
that when time becomes large enough, the static COD intensity factor can be derived, inferring that a po-
sitive electric loading promotes crack growth, and a negative one hinders crack growth for fixed applied
magnetic loading. Note that here the COD intensity factor is chosen as a fracture criterion in magnetoelec-
troelastic materials, just as in piezoelectric materials, and its superiority over the stress intensity factor as a
fracture criterion has been elucidated for piezoelectric materials (Li and Lee, 2004a,b).

The variations of the normalized dynamic COD intensity factors under the action of external magnetic
and mechanical impact loadings with Do/ay = 0.25 x 10~ C/N are illustrated in Figs. 5 and 6, respectively.
By inspection, the trends in Figs. 5 and 6 are similar to those in Figs. 3 and 4. However, for fixed electric
loading, a positive magnetic loading decreases the COD intensity factor, while a negative one increases the

1.4

r.=0.25X10°(C/N)

0.8
r.=-0.25X10°(C/N)

0.6

12
Cag COD/ Go(na)

0.4+

—6— Fibrous composites

0.2
; 0 —%— Laminated composites

0.0 . , . ; . ; . ; . )
0 2 4 6 8 10

ct/a

Fig. 3. Transient response of the normalized dynamic COD intensity factor under different electric and mechanical impacts in the
absence of magnetic loading.
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_ 6 —o— Fibrous composites
BO/GO_O'2X10 (M/A) —%— Laminated composites
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0 2 4 6 8 10
ct/a

3199

Fig. 4. Transient response of the normalized dynamic COD intensity factor under different electric and mechanical impacts in the

presence of magnetic loading.

12
Caa COD/ Go(na)

1.4 5
1.2 1
1.0 _
r&—O
08 _r=0. 2x1o (m/A) )
0.6 1 r=o.4x10' (m/A)
& O O
0.4

—6— Fibrous composites
—x%— Laminated composites

0.2 Hj

0.0 4 . . . . . . , ; , .
0 2 4 6 8 10
cst/a

Fig. 5. Transient response of the normalized dynamic COD intensity factor under different magnetic and mechanical impacts in the

absence of electric loading.

COD intensity factor, which is completely opposite to the effect of applied electric loading on the COD
intensity factor. This is attributed to a negative piezomagnetic constant and a positive piezoelectric con-
stant. So, a positive magnetic loading impedes crack propagation and a negative one aids crack propaga-
tion. Moreover, the effect of the magnetoelectric coefficient on dynamic COD intensity factor is very evident
in the presence of applied magnetic loading, even for Dy = 0.
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Fig. 6. Transient response of the normalized dynamic COD intensity factor under different magnetic and mechanical impacts in the
presence of electric loading.

Figs. 7-9 are devoted to the effects of electric and magnetic impacts on dynamic stress intensity factors.
The variation of dynamic stress intensity factors for fibrous and laminated composites subjected to sudden
different electric and mechanical impacts is depicted in Fig. 7. It has been shown in Wang and Mai (2004)
that stress intensity factor in the static case is independent of applied electric and magnetic loadings. This is
not true for the corresponding dynamic case. Clearly, it is seen from Figs. 7-9 that at the early stage of the
action of applied impact loadings, dynamic stress intensity factors are dramatically affected by electric and

r,=0.5X10’
r,=0
r.=-0.5X10°(C/N)

c 172
K'/o (ma)

—©— Fibrous composites
—%— Laminated composites

T T T T 1
0 2 4 6

ct/a

Fig. 7. Variation of the normalized dynamic stress intensity factor with the normalized time when no magnetic loading is applied.
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ct/a
Fig. 8. Influence of electric impact on dynamic stress intensity factor.
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0 2 4 6
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Fig. 9. Influence of magnetic impact on dynamic stress intensity factor.

magnetic impact loadings. Moreover, the effects of electric and magnetic loadings on the peak of dynamic
stress intensity factor are different. Or rather, the overshoot of dynamic stress intensity factor rises with the
increase of electric loading from Fig. 8, or with the decrease of magnetic loading from Fig. 9. And when
time becomes large enough, the effects of electric and magnetic loadings disappear, and dynamic stress
intensity factor tends to the corresponding static value, related to neither electric loading nor magnetic
loading. It is further observed that the response of dynamic stress intensity factor has little relationship with
the magnetoelectric coefficient.
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Another interesting investigation is the variation of dynamic energy density factor around the crack tip
with time. With the results obtained above, dynamic energy density factor is easily evaluated through (87).
Some numerical results are presented in the following figures. Figs. 10 and 11 show respectively the dy-
namic energy density factor normalized by the corresponding static value at the absence of and in the pres-
ence of applied magnetic loading for the BaTiO;—CoFe,O4 composite. It is seen that there is significant

r.=0.25X10°(C/N)
r,.=0

_— r.=-0.25X10°(C/N)

OJO
,\S 0.8
A

04

—6— Fibrous composites
0 —x— Laminated composites
0.0 , . , . , . , . , .
0 2 4 6 8 10
ct/a

Fig. 10. Dynamic energy density factor vs normalized time for By = 0.

r,=0
_ 9
,=-0.25X107(C/N)
2 10+
=
0.9 +
_ 6 —o— Fibrous composites
B /0,=0.2X10"(m/A) —x— Laminated composites
0.8 i T T T T T T T T 1
0 2 4 6 8 10

cst/a

Fig. 11. Dynamic energy density factor vs normalized time for By/oy = 0.2 x 107° m/A.
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difference between the dynamic normalized energy density factors corresponding to By =0 and
Bylag=0,0.2x 107® m/A, implying that applied magnetic loading has an important contribution of
dynamic energy density factor. In contrast, for applied electric loading, Figs. 12 and 13 illustrate the influ-
ence of applied electric loading on dynamic energy factor, which indicates that the effect is very small for the
cases of Do/ag=0.25x 10" C/N.

_ 6
r,=0.2X10°(m/A)

2
= _ 6
“ r,=-0.2X107(m/A)
—6— Fibrous composites
D =0 . .
0 —x— Laminated composites
T T T T T T 1
4 6 8 10
ct/a
S
Fig. 12. Dynamic energy density factor vs normalized time for Dy = 0.
1.5 4
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J _ 6
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1.0 4 : e
e~ .
\ rB—0.2X1 0" (m/A)
o _ -6
g r,.=-0.2X107(m/A)
=
0.5
D,/6,=0.25X1 0°(CIN) —— Flbr(.)us compos1te§
—x— Laminated composites
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Fig. 13. Dynamic energy density factor vs normalized time for Dy/ao = 0.25x 10~° C/N.
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6. Conclusions

The dynamic problem involving a magnetoelectroelastic medium with a crack penetrating through the
solid along the poling direction is analyzed under antiplane mechanical impact and inplane electric and
magnetic impact loadings. The Fourier and Laplace transforms are employed to solve the associated mixed
initial-boundary value problem. A Fredholm integral equation of the second kind is derived and solved via
a numerical approach. Using a numerical inversion of the Laplace transform formulated by Stehfest, the
dynamic intensity factors of COD and stress, and dynamic energy density factors are determined numeri-
cally in the time domain, and the numerical results are presented graphically to show the effects of the mate-
rial properties and applied electric and magnetic impacts.
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